United States Patent

US009438269B1

(12) (10) Patent No.: US 9,438,269 B1
Li et al. 45) Date of Patent: Sep. 6, 2016
(54) ACCELERATING CODESET CONVERSION 2,22‘2‘,312 gé ggggg]S3urk}el |
s K anchez et al.
IN A COMPUTING ENVIRONMENT §332.796 B2 12/2012 Osann. Ir.
8,606,051 B2* 12/2013 Wangcccoeeene. HO3M 1/1009
(71) Applicant: International Business Machines e 341/126
Corporation, Armonk, NY (US) 8,704,687 B2* 4/2014 Clissold HO3M 7/02
341/106
(72) Inventors: Jian Li, Austin, TX (US); Zhuo Li, 2013/0125195 Al 5/2013 Lee et al.
Cedar Park, TX (US), Su Liu, AuStin, 2014/0035764 Al 2/2014 Clissold et al.
TX (US); Shunguo Yan, Austin, TX OTHER PUBLICATIONS
(US) “Accelerate C in FPGA: Fast Prototyping, Fast Optimization, Fast
. . . . Applications,” Impulse Accelerated Technologies, Inc., www.
(73) Assignee: Internatl(.)nal Business Machines ImpulseC.com, 2007, 2 pages.
Corporation, Armonk, NY (US) Rotem, “C-to-Verilog.com: High-Level Synthesis Using LVLM,”
Haifa University, Nov. 2010, 35 pages.
(*) Notice: Subject to any disclaimer, the term of this Cox et al, “Ganglion-A Fast Field-Programmable Gate Array
patent is extended or adjusted under 35 Implementation of a Connectionist Classifier,” IEEE Journal of
Solid-State Circuits, vol. 27, No. 3, Mar. 1992, pp. 288-299.
US.C. 154(b) by 0 days. Anonymous, “A method for automatically loading a right conver-
. sion object from code set alias name,” ip.com, IP.com No.
(21) Appl. No.: 14/842,868 000205151, Mar. 16, 2011, 4 pages.
. Edwards, “Microprocessors or FPGAs? Making the Right Choice,”
(22) Filed: Sep. 2, 2015 Technology in Context: FPGAs and CPUs: Allies or Rivals?,
reprinted from Feb. 2011 RTC Magazine, 3 pages.
(51) Int. CL
HO3M 7/00 (2006.01) * cited by examiner
ngtfzz//oozs 888288 Primary Examiner — Jean B Jeanglaude
(52) US.Cl ' Joseph Petrokaitis
CPC ...ccceveeeee. HO3M 7/02 (2013.01); HO3M 7/28 (57) ABSTRACT
(2013.01); HO4L 67/10 (2013.01) A method for accelerating codeset conversion in a comput-
(58) Field of Classification Search ing environment is provided. The method may include,
CPC ... HO3M 7/28; HO3M 7/00; HO3M 7/42; among other things, receiving one or more requests for
HO4L 67/10 codeset conversion. The one or more requests may be
USPC e, 341/106, 50, 51, 126 received, for example, from a client over a communications

(56)

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,876,541 A * 10/1989 Storer HO3M 7/3088
341/106
5,592,594 A * 1/1997 Cahoon GO6F 12/0875
345/501
5,929,792 A * 7/1999 Herriot GO6F 17/2217
341/55
Server 102
M Processor |
Memory 108

i | Operating System 108

Codeset Conversion Acceleration 110

Persistent Storage 12

Disk Storage 114

Client
Applicalion
138

Godeset Converter Weigting
Cadosot toh Agant
CEM Weight Algorithm

—’ Network Interface: 128 '—-
—

| Imput Device 130 Output Device 132

network. A change in the one or more requests for codeset
conversion may be detected. In response to detecting the
change, a subset of codeset converters may be selected from
among a library of codeset converters to be included in a
codeset conversion accelerator. The codeset conversion
accelerator may be, among other things, reprogrammed with
selected subset of codeset converters. The one or more
received requests may be subsequently rerouted to the
reprogrammed codeset conversion accelerator.

20 Claims, 10 Drawing Sheets

yyyyyyyyyy
Suiteh Agent
24

R Seicive
o et Aot 2o
ionmaion Frograniing
i Srormon
e

Codeset Conversion
Acceleration 110

CCM Weight
Algorithm
128

Codeset
Converter

Weighting
122

Server 102

U.S. Patent

7

Sep. 6, 2016 Sheet 1 of 10
100 \'
Server 102
— Processor 104
Memory 106
- Operating System 108
Codeset Conversion Acceleration 110
Persistent Storage 112

Disk Storage 114
Selective 116
Accelerator Re-programming Daemon
. Iconv Profile Information 118
Codeset Converter Library 120
Codeset Converter Weighting 122
Codeset Conversion Switch Agent 124
CCM Weight Algorithm 126
— Network Interface 128
.
;\3 A Input Device 130 Output Device 132

FIG. 1A

US 9,438,269 B1

Client
Application
138

U.S. Patent Sep. 6, 2016 Sheet 2 of 10 US 9,438,269 B1

Codeset
Codeset Cfir;)\;:rter
Conversion y 20ry CCM Weight
Switch Agent — Algorithm
124 126
) Y

Selective
Accelerator Re-
Programming
Daemon
116

Codeset
Converter
Weighting
122

lconv Profile
Information
118

Codeset Conversion
Acceleration 110

Server 102

FIG. 1B

U.S. Patent Sep. 6, 2016 Sheet 3 of 10 US 9,438,269 B1

200A
N

102 —.

202 .

Request Input

110 - -

124 - v

Codeset Conversion

l‘ Switch Agent
120 204 4

Codeset Converter D

Codeset Converter E

Codeset Converter X

206 - v

Request Output

FIG. 2A

U.S. Patent Sep. 6, 2016 Sheet 4 of 10 US 9,438,269 B1
200B
I
102 -

202

110~

Request Input

124 .

Y

Codeset Conversion
Switch Agent

1207a\ [—_

204 --.

Codeset Converter B

Codeset Converter C

Codeset Converter X

206 ..

A4

Request Output

FIG. 2B

U.S. Patent Sep. 6, 2016 Sheet 5 of 10 US 9,438,269 B1

200C
I

102 —-.

202 .

Request Input

110 .

124 —. Y

N\

Codeset Conversion

Switch Agent
120 204 -

Codeset Converter B

Codeset Converter C

Codeset Converter X

206 - v

Request Output

FIG. 2C

110
I

U.S. Patent Sep. 6, 2016 Sheet 6 of 10 US 9,438,269 B1

A 4

Receiving one or more requests for codeset conversion

A 4

Detecting for a change in the one or more
received requests for codeset conversion

ls Change to Codeset 306

Conversion Requests
Detected?

NO

Selecting a subset of codeset converters associated
with a library of codeset converters for inclusion in a
codeset conversion accelerator in response to the
detected change

308
/

Y

Reprogramming the codeset conversion accelerator with
the selected subset of codeset converters

310
/'

312

Is Requested Codeset

Converter on CCA?

YES NO

/‘ 314

316
/

Rerouting the one or more requests
for codeset conversion {o the
codeset conversion accelerator

Use CCM to perform requested
codeset conversion

FIG. 3

U.S. Patent Sep. 6, 2016 Sheet 7 of 10 US 9,438,269 B1

308
™

Calculating one or more weight values for the | — 402
library of codeset converters

Sorting the library of codeset converters according |~ 404
to the one or more calculated weight values

A 4

Comparing the calculated weight values of the one
or more sorted codeset converters to one or more 406
stored weight values associated with one or more ¢~
codeset converters in the codeset converter
accelerator

Determining a ranking for the library of codeset 408
converters based on the compared weight values

FIG. 4

U.S. Patent Sep. 6, 2016 Sheet 8 of 10 US 9,438,269 B1

402
N

Collecting data corresponding to language — 502
information for the one or more requests

A 4

Collecting data corresponding to locale information |,— 504
for the one or more requests

A 4

Collecting data corresponding to geolocation | 506

information for the one or more requests

A 4

Collecting data corresponding to a computer | 508
platform associated with the one or more requests

Y.

Collecting data corresponding to an existing

codeset converter usage associated with the one or — 510

more requests, whereby the data comprises a

number of function calls and amount of codeset
conversion data

A 4

Collecting data corresponding to predefined weight j,— 512
values for each of the library of codeset converters

A 4

Calculating one or more weight values for each of 514
the library of codeset converters based on one or
more of the collected data

FIG. 5

U.S. Patent Sep. 6, 2016 Sheet 9 of 10 US 9,438,269 B1

310
I

Adding one or more codeset converters having a 602
higher rank than one or more existing codeset |
converters to the codeset conversion accelerator

Y

Deleting the one or more existing codeset

converters having a lower rank from the codeset | — 604

conversion accelerator for each added codeset
converter

Y

Updating the stored weight values associated with 606
the one or more added codeset converters in the e
codeset converter accelerator

FIG. 6

US 9,438,269 B1

Sheet 10 of 10

Sep. 6, 2016

U.S. Patent

L Old
CT 3N D
: 3 ¥y
L oM
i mm,w, 0Lt
..... m T weiboigyoo-
\m‘m mwmmm,// R 538 (WSS INIIEAE-
88— J18¥104 m B —
S : i B
\ EER :!s..e,..isi;i\ﬂ
“ 088
[N
T — B |
r FE8—
e —___onw |
T ET zZ8—
T SHSS04 |
M 928 0Z8—
Wl i
§
CININDJNG) ToNBI M SININO4M0T TREI
006 008 20l

US 9,438,269 Bl

1
ACCELERATING CODESET CONVERSION
IN A COMPUTING ENVIRONMENT

BACKGROUND

The present invention generally relates to computer com-
munications, and more particularly, to accelerating requests
for codeset conversion in a computing environment.

A codepage or codeset may refer to a table of values that
describe a character set for encoding a particular language.
For example, according to the Unicode/UTF-8 codeset stan-
dard, the registered trademark symbol ‘®’ is represented by
Unicode code value U+00AE. However, within the
GB18030 codeset standard, the symbol ‘®’ is represented by
GB18030 code value 0x81308533. Accordingly, a codeset
converter would convert the code value (e.g., U+00AE) for
a character (e.g., ®) in one codeset standard (e.g., Unicode)
to another code value (e.g., 0x81308533) for the same
character (e.g., ®) in another codeset standard (e.g.,
GB18030) using, for example, a codeset mapping table.
Generally, codeset converters may be stored as part of a
library with thousands or more codeset converters. Accord-
ingly, it may be, among other things, time-intensive to select
the correct codeset converter for conversion and carry out
the codeset conversion.

BRIEF SUMMARY

According to one exemplary embodiment, a method for
accelerating codeset conversion in a computing environment
is provided. The method may include, among other things,
receiving one or more requests for codeset conversion. The
one or more requests may be received, for example, from a
client over a communications network. A change in the one
or more requests for codeset conversion may be detected. In
response to detecting the change, a subset of codeset con-
verters may be selected from among a library of codeset
converters to be included in a codeset conversion accelera-
tor. The codeset conversion accelerator may be, among other
things, reprogrammed with selected subset of codeset con-
verters. The one or more received requests may be subse-
quently rerouted to the reprogrammed codeset conversion
accelerator.

According to another exemplary embodiment, a computer
program product for accelerating codeset conversion in a
computing environment is provided. The computer program
product may include a computer-readable storage device and
program instructions stored on one or more tangible storage
devices. The program instructions are executable by a pro-
cessor for performing a method that may accordingly
include, among other things, receiving one or more requests
for codeset conversion. The one or more requests may be
received, for example, from a client over a communications
network. A change in the one or more requests for codeset
conversion may be detected. In response to detecting the
change, a subset of codeset converters may be selected from
among a library of codeset converters to be included in a
codeset conversion accelerator. The codeset conversion
accelerator may be, among other things, reprogrammed with
selected subset of codeset converters. The one or more
received requests may be subsequently rerouted to the
reprogrammed codeset conversion accelerator.

According to another exemplary embodiment, a computer
system for accelerating codeset conversion in a computing
environment is provided. The computer system may include
one or more processors, one or more computer-readable
memories, one or more computer-readable tangible storage

10

15

20

25

30

40

45

50

55

60

65

2

devices, and program instructions stored on at least one of
the one or more storage devices for execution by at least one
of the one or more processors via at least one of the one or
more memories. The computer system is capable of per-
forming a method that may accordingly include, among
other things, receiving one or more requests for codeset
conversion. The one or more requests may be received, for
example, from a client over a communications network. A
change in the one or more requests for codeset conversion
may be detected. In response to detecting the change, a
subset of codeset converters may be selected from among a
library of codeset converters to be included in a codeset
conversion accelerator. The codeset conversion accelerator
may be, among other things, reprogrammed with selected
subset of codeset converters. The one or more received
requests may be subsequently rerouted to the reprogrammed
codeset conversion accelerator.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1A is a computer system operable for codeset
conversion acceleration according to an exemplary embodi-
ment.

FIG. 1B is a schematic block diagram corresponding to
component and algorithms associated with codeset conver-
sion acceleration according to an exemplary embodiment.

FIGS. 2A-2C are block diagrams depicting the operation
of' a Codeset Converter Acceleration (CCA) system accord-
ing to an exemplary embodiment.

FIG. 3 is an operational flow chart corresponding to a
CCA program according to an exemplary embodiment.

FIG. 4 is an operational flow chart corresponding to a
codeset selecting process utilized by a CCA program accord-
ing to an exemplary embodiment.

FIG. 5 is an operational flow chart corresponding to a
weight value calculating process utilized by a CCA program
according to an exemplary embodiment.

FIG. 6 is an operational flow chart corresponding to a
reprogramming process utilized by a CCA program accord-
ing to an exemplary embodiment.

FIG. 7 is a block diagram of hardware and software for
executing the process flows of FIGS. 3-6 according to an
exemplary embodiment.

The drawings are not necessarily to scale. The drawings
are merely schematic representations, not intended to por-
tray specific parameters of the invention. The drawings are
intended to depict only typical embodiments of the inven-
tion. In the drawings, like numbering represents like ele-
ments.

DETAILED DESCRIPTION

Detailed embodiments of the claimed structures and
methods are disclosed herein; however, it can be understood
that the disclosed embodiments are merely illustrative of the
claimed structures and methods that may be embodied in
various forms. This invention may, however, be embodied in
many different forms and should not be construed as limited
to the exemplary embodiments set forth herein. Rather, these
exemplary embodiments are provided so that this disclosure
will be thorough and complete and will fully convey the
scope of this invention to those skilled in the art. In the
description, details of well-known features and techniques
may be omitted to avoid unnecessarily obscuring the pre-
sented embodiments.

US 9,438,269 Bl

3

The one or more exemplary embodiments described
herein accelerate codeset conversion within a computer
environment (e.g., OpenPower architecture, cloud comput-
ing environment, etc.). The codeset conversion acceleration
may utilize a codeset conversion acceleration appliance
(e.g., a field-programmable gate array (FPGA) or graphics
processing unit (GPU)) that may have, among other things,
improved throughput, energy efficiency, and speed over
standard CPU-based codeset conversion. The codeset con-
version acceleration appliance may be designed to dynami-
cally select and upload the most-used (e.g. the most impor-
tant, most frequently used, and/or most requested) codeset
converters from among a library of thousands of codeset
converters on the basis of different user-based criteria, such
as, but not limited to, language (e.g., English, Japanese,
Chinese, etc.), geographical location (e.g., North America,
Asia, etc.), and computing platform (e.g., personal com-
puter, storage server, push server, etc.).

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,

10

15

20

25

30

35

40

45

55

60

4

microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the

US 9,438,269 Bl

5

functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Referring to FIG. 1A, a computer system 100 operable for
codeset conversion acceleration according to an exemplary
embodiment is depicted. Computer system 100 may contain
a server 102 that may provide, among other things, Codeset
Conversion Acceleration (CCA) 110. The server 102 may
additionally be connected to other computers and servers via
a network 136. The network 136 may include connections,
such as wire, wireless communication links, or fiber optic
cables.

Server 102 may include, among other things, a processor
104 that executes instructions for software, for example the
operating system (OS) 108 and CCA 110 (discussed in
further detail with respect to FIG. 1B) that may be loaded
into a memory 106. The processor 104 may be a set of one
or more processors or may be a multi-processor core,
depending on the particular implementation. Furthermore,
the processor 104 may be connected, via a bus 134 or the
like, to, among other things, memory 106, a network inter-
face device 128, a disk storage 114, a persistent storage 112,
an input device 130, and an output device 132.

The server 102 is generally under the control of OS 108
(e.g., Linux, Windows, AIX, etc.). However, it may be
appreciated that any operating system supporting the func-
tions disclosed herein may be used. The processor 104 is
included to be representative of a single CPU, multiple
CPUs, a single CPU having multiple processing cores, and
the like. Similarly, the memory 106 may be a random access
memory. While the memory 106 is shown as a single
identity, it should be understood that the memory 106 may
comprise a plurality of modules, and that the memory 106
may exist at multiple levels, from high speed registers and
caches to lower speed but larger formats. The network
interface device 128 may be any type of network commu-
nications device allowing the server 102 to communicate
with other computers, including the client application 138,
via a network 136 or other communications network (i.e.,
the Internet). While the client application 138 is shown as a
single identity, it should be understood that the client appli-
cation 138 may comprise a plurality of clients in commu-
nication with server 102 over network 136.

Persistent storage 112 may be any device or hardware that
is capable of storing information, such as, data, OS 108, and
program instructions, including those providing CCA 110.
Persistent storage 112 may accordingly take various forms
depending on the particular implementation. For example,
persistent storage 112 may be, among other things, disk
storage 114, a flash memory, optical disk, magnetic tape,
cloud storage devices, or some combination of the above.

Instructions for the OS 108, CCA 110, applications and/or
programs may be located in persistent storage 112, which
may communicate with processor unit 104 through the bus
134. The instructions may be in a functional form on
persistent storage 112. Additionally, these instructions may
be loaded into memory 106 for execution by processor unit
104.

10

15

20

25

30

35

40

45

50

55

60

65

6

The input device 130 may be any device for providing
input to the server 102 (e.g., a keyboard, mouse, etc.).
Additionally, the output device 132 may be any device for
providing output to a user of the server 102. Although shown
separately from the input device 132, the output device 132
and input device 130 may be combined to form a single unit
(e.g., a display screen with an integrated touch-screen, etc.).

As will be discussed with reference to FIG. 7, the server
102 and the computer hosting the client application 138 may
include one or more internal components 800 and one or
more external components 900.

FIG. 1B illustrates one or more components and algo-
rithms associated with CCA 110 running on the server 102
as depicted in FIG. 1A, according to one exemplary embodi-
ment. As used herein, CCA 110 (FIGS. 1A, 1B) includes
functionality that the operating system performs on behalf of
CCA 110, such as retrieving environment variables, and
reading files.

A selective accelerator re-programming daemon 116, may
take as input, among other things, iconv profile information
118 and a codeset converter weighting 122 to determine
which codeset converters from among a codeset converter
library 120 may be selected to accelerate codeset conversion
in a computing environment. Codeset conversion accelera-
tion 110 may be shown and described through an algorithm,
configuration rules, and components that are specialized for
performing codeset conversion. However, it may be appre-
ciated that codeset conversion acceleration 110 may be
embodied in components and reconfiguration rules other
than those described. Additionally, selective accelerator re-
programming daemon 116 may be coupled to a codeset
conversion switch agent 124 and a codeset conversion
modeler (CCM) weight algorithm 126.

Codeset converter library 120 may include one or more
codeset converters and an iconv() function. The iconv()
function may, among other things, convert a buffer of
characters specified by an inbuf parameter from one coded
character set identifier (CCSID) into another CCSID and
store the converted characters into a buffer specified by an
outbuf parameter. The inbuf parameter may point to a
variable that points to the first character in the input buffer.
Additionally, the outbuf parameter may point to a variable
that points to the first available byte in the output buffer. The
CCSIDs used are those in a conversion descriptor, cd, which
may returned from a call to either an iconv_open() or an
QtglconvOpen() function.

On input, an inbytesleft parameter may indicate a number
of bytes in inbuf to be converted. Similarly, an outbytesleft
parameter may indicates a number of bytes available in
outbuf. These values may be, among other things, decre-
mented when conversion is done, such that on return they
may indicate a state of their associated buffers. For encod-
ings dependent on shift state, iconv() may change the shift
state of the conversion descriptor to match the shift state at
the end of the input buffer. For subsequent calls to iconv()
conversion may begin using the current shift state of the
conversion descriptor. Additionally, codeset converter
library 120 may receive one or more appropriate parameters
from iconv profile information 118. Thus, the iconv()
function provides an application programming interface
(API) for codeset conversion.

Codeset conversion switch agent 124 may, among other
things, reroute the received requests from client application
138 over network 136 to an appropriate codeset converter.
Codeset conversion switch agent 124 may route requests to
codeset converter library 120, where it may be converted
using the iconv() APIL. Alternatively, codeset conversion

US 9,438,269 Bl

7

switch agent 124 may route one or more requests from client
138 to a hardware codeset conversion accelerator.

CCM weight algorithm 126 may be used to calculate one
or more weight values for the codeset converters in codeset
converter library 120. By way of example and not of
limitation, CCM weight algorithm 126 may be, among other
things, of the form f(cem,)=aX,+bX,+cX + . . . +zX,,.
Coefficients a, b, c, etc. may be predetermined and stored in
codeset converter weighting 122. Additionally, X,, X,, X,
etc. may include but is not limited to language information,
locale information, geolocation information, a number of
calls for specific codeset converters, one or more predefined
weight values for the codeset converters, and information
associated with iconv profile information 118. CCA 110 may
optionally store the calculated codeset conversion weights in
codeset converter weighting 122 for future use.

FIGS. 2A-2C depict the operation of a Codeset Converter
Acceleration (CCA) system according to an exemplary
embodiment. FIGS. 2A-2C may be described with the aid of
the exemplary embodiments of FIGS. 1A-1B.

FIG. 2A depicts a schematic block diagram 200A of a
CCA system on server 102 (FIGS. 1A-1B), according to an
exemplary embodiment. The CCA system may include,
among other things, a request input 202, CCA 110 (FIGS.
1A-1B), and a request output 206. CCA 110 may further
include a codeset conversion switching agent 124 (FIGS.
1A-1B), a codeset converter library 120 (FIGS. 1A-1B), and
a codeset conversion acceleration appliance 204. Codeset
converter library 120 may contain a plurality of Codeset
Converters A-X. Additionally, codeset conversion accelera-
tion appliance 204 may contain one or more codeset con-
verters (e.g., Codeset Converters A, B, and C), which may
be identified as, among other things, the most-used (i.e., the
most important, most frequently used, and/or most
requested) codeset converters from among the codeset con-
verter library 120. Codeset conversion acceleration appli-
ance 204 may be, among other things, a field-programmable
gate array (FPGA), graphics processing unit (GPU), or any
architecture capable of parallel-processing requests for
codeset conversion. It may be appreciated that codeset
conversion acceleration appliance 204 may contain any
number of the most-used codeset converters based on the
one or more requests received through request input 202. It
may be further appreciated that the codeset converters on
codeset conversion acceleration appliance 204 are substan-
tially the same or similar to one or more codeset converters
from among codeset converter library 120. In operation, the
server 102 may receive one or more requests through request
input 202. CCA 110 may, among other things, route the
received requests, using codeset conversion switch agent
124, to codeset converter library 120 or codeset conversion
acceleration appliance 204 for codeset conversion. The
requests may then be output by request output 206.

FIG. 2B is a schematic block diagram 200B illustrating a
change in the codeset converters identified in FIG. 2A as the
most-used codeset converters. The change may accordingly
include, among other things, a change in the language,
locale, or geolocation of the received requests; a change in
anumber of calls for specific codeset converters; or a change
to one or more predefined weight values for the codeset
converters. In operation, CCA 110 located on server 102
may detect a change to the requests received by request input
202. In response to detecting this change, one or more
weight values may be calculated for the codeset converters
stored in codeset converter library 120. The weight values
may be, among other things, determined using the changes
to the requests detected by server 102. Additionally, the

5

10

15

20

25

30

35

40

45

50

55

60

65

8

weight values may be compared against one or more pre-
viously calculated weight values saved in codeset converter
weighting 122 (FIGS. 1A-1B) stored in memory and may, in
turn, be stored in codeset converter weighting 122, thus
allowing the weight values to be configurable. Upon detect-
ing the change in requests received through request input
202, server 102 may identify, for example, Codeset Con-
verters A, D, and E, for example, may be identified as the
new most-used codeset converters.

FIG. 2C is a schematic block diagram 200C of a dynamic
response to the change in the most-used codeset converters
of the CCA system depicted in FIG. 2B. The CCA system
may, among other things, reprogram the new set of most-
used codeset converters (i.e., Codeset Converters A, D, and
E) onto the codeset conversion accelerator. In operation,
codeset conversion acceleration appliance 204 may be
reprogrammed with Codeset Converters A, D, and E. It may
be appreciated that one or more codesets from among
codeset converter library 120 that may already be pro-
grammed to codeset conversion acceleration appliance 204
need not be reprogrammed a subsequent time. For example,
CCA 110 on server 102 may detect Codeset Converter A
may be located on codeset conversion acceleration appliance
204 and therefore may not remove Codeset Converter A to
obviate the need to reprogram codeset conversion accelera-
tion appliance 204 with Codeset Converter A for a second
time. Codeset conversion switch agent 124 may accordingly
reroute requests for codeset conversion associated with
Codeset Converters A, D, and E to codeset conversion
acceleration appliance 204. Alternatively, codeset conver-
sion switch agent 124 may route requests received through
request input 202 associated with codeset converters not
programmed to codeset conversion acceleration appliance
204 to codeset converter library 120. Upon conversion,
codeset converter library 120 and codeset conversion accel-
eration appliance 204 may output the converter requests to
request output 206.

FIG. 3 is an operational flow chart corresponding to
Codeset Conversion Acceleration 110 (FIG. 2) associated
with the exemplary embodiment depicted in FIG. 2. CCA
110 of FIG. 3 may be described with the aid of the exem-
plary embodiments of FIG. 1A, FIG. 1B, and FIGS. 2A-2C.

At 302, one or more requests for codeset conversion is
received. As previously discussed, the one or more requests
may be received from one or more client applications
connected over a network. Alternatively, the one or more
requests may also be received from within the same com-
puting environment. In operation, request input 202 (FIGS.
2A-2C) on server 102 (FIGS. 2A-2C) may receive one or
more requests for codeset conversion from client application
138 (FIG. 1A) via network 136 (FIG. 1A). CCA 110 may
then direct the request to codeset conversion switch agent
124 (FIGS. 2A-2C) for, among other things, routing to the
appropriate converter.

At 304, a change in the one or more received requests for
codeset conversion is detected. For example, CCA 110 may
monitor requests received from client application 138 (FIG.
1A) over network 136 (FIG. 1A) in order to detect, among
other things, a change associated with the one or more
requests. A change in one or more requests for codeset
conversion may be considered to be, among other things, a
change in the language, locale, or geolocation of the
received requests; a change in a number of calls for specific
codeset converters; or a change to one or more predefined
weight values for the codeset converters. CCA 110 may
perform the monitoring of client application 138 by polling
network 136 to detect a change in the received requests. For

US 9,438,269 Bl

9

example, in some implementations, CCA 110 may reside
within the operating system 108 (FIG. 1A). Further, a
daemon associated with operating system 108 may be used
by the CCA 110 to monitor for the change to the requests.

At 306, a change to one or more requests for codeset
conversion is detected for. In operation, client application
138 (FIG. 1A) may send one or more requests for codeset
conversion that may utilize, for example, Codeset Converter
C (FIG. 2A). Subsequently, client application 138 may later
send one or more requests for codeset conversion that may
utilize for example, Codeset Converter D (FIG. 2B). Thus
CCA 110 may detect a change in the language and locale of
the received requests. If, however, a change is not detected,
CCA 110 may continue to receive requests for codeset
conversion and monitor for a change.

At 308, if a change to the received requests for codeset
conversion is detected, a subset of codeset converters asso-
ciated with a library of codeset converters is selected for
inclusion within a codeset conversion accelerator. It may be
appreciated that the subset of codeset converters may be
selected by calculating one or more weight values for each
of the codeset converters from among the library of codeset
converters and comparing the calculated weight values to
one or more stored weight values. In an alternative embodi-
ment, the subset of codeset converters may be specified
manually. In operation, CCA 110 may, upon detecting the
received requests from client application 138 (FIG. 1A) via
request input 202 (FIG. 2B), may, among other things, select
one or more codeset converters (for example, Codeset
Converters A, D, and E) for inclusion in codeset conversion
acceleration appliance 204 (FIG. 2B).

At 310, the codeset converter accelerator is repro-
grammed with the selected subset of codeset converters. The
selected subset of codeset converters may be the most-used
codeset converters from among the library of codeset con-
verters. Thus, reprogramming the codeset converter accel-
erator with the selected subset of codeset converters may
allow conversion of one or more requested associated with
the selected codeset converters to be, for example, faster and
more energy-efficient. In operation, CCA 110 (FIGS.
2A-2C) may direct the selective accelerator reprogramming
daemon 116 (FIGS. 1A-1B) to program Codeset Converters
D and E (FIG. 2C) to codeset conversion acceleration
appliance 204 (FIG. 2C). It may be appreciated that selective
accelerator re-programming daemon 116 may restrict the
programming of one or more codeset converters previously
programmed to codeset conversion acceleration appliance
204 in order to, among other things, prevent deletion and
subsequent reprogramming of, for example, Codeset Con-
verter A.

At 312, the codeset converter switch agent determines
whether the received requests are associated with a codeset
converter programmed to the codeset converter accelerator.
For example, one or more received requests may utilize a
codeset converter programmed to the codeset conversion
accelerator and may, therefore, be routed to the codeset
conversion accelerator for codeset conversion. Conversely,
one or more received requests may utilize a codeset con-
verter not programmed to the codeset conversion accelerator
and may, therefore, be routed to the standard codeset con-
version library.

At 314, if the requested codeset converter is on the
codeset converter accelerator, the request is rerouted to the
codeset converter accelerator. In operation, CCA 110 (FIGS.
2A-2C) may receive a request from request input 202 (FIGS.
2A-2C) that may use Codeset Converter A. Thus, CCA 110
may, among other things, direct codeset conversion switch

15

20

40

45

50

10
agent 124 (FIGS. 2A-2C) to route the received request to
codeset conversion acceleration appliance 204 (FIGS.
2A-2C) for codeset conversion.

At 316, if the requested codeset converter is not on the
codeset converter accelerator, the received request is con-
verted by the CCM. In operation, CCA 110 (FIGS. 2A-2C)
may receive a request from request input 202 (FIGS. 2A-2C)
that may use Codeset Converter X (FIGS. 2A-2C). Thus,
CCA 110 may, among other things, direct codeset conver-
sion switch agent 124 (FIGS. 2A-2C) to route the received
request to codeset converter library 120 (FIGS. 2A-2C) for
codeset conversion.

FIG. 4 depicts an exemplary operational flow chart
describing the codeset selecting process 308 within the
operational flow chart of the CCA 110 of FIG. 3. FIG. 4 is
described with the aid of the exemplary embodiments of
FIG. 1A, FIG. 1B, and FIGS. 2A-2C.

At 402, one or more weight values for the library of
codeset converters is calculated. As previously discussed,
one or more weight values may be calculated for the codeset
converters stored in the library of codeset converters. The
weight values may be, among other things, determined using
the changes to the requests. Additionally, the weight values
may be compared against one or more previously calculated
weight values stored in memory and may, in turn, be stored
in memory. In operation, CCA 110 (FIGS. 2A-2C) on server
102 (FIGS. 2A-2C) may use CCM weight algorithm 126
(FIGS. 1A-1B) to calculate one or more stored weight
values.

At 404, the library of codeset converters is sorted accord-
ing to the one or more calculated weight values. The sorting
may be based on, among other things, the calculated weight
values for the library of codeset converters. In operation,
CCA 110 (FIGS. 2A-2C) may direct codeset converter
library 120 (FIGS. 2A-2C) to sort the one or more codeset
converters. CCA 110 may detect Codeset Converter A
(FIGS. 2A-2C), for example, has the highest weight value
and may subsequently sort it to a front position within
codeset converter library 120. Additionally, CCA 110 may
detect Codeset Converter X (FIGS. 2A-2C), for example,
has the lowest weight value and may subsequently sort it to
an end position within codeset converter library 120.

At 406, the calculated weight values of the one or more
sorted codeset converters are compared to one or more
stored weight values associated with one or more codeset
converters in the codeset converter accelerator. In operation,
CCA 110 (FIGS. 2A-2C) may compare the weight values
calculated by CCM weight algorithm 126 (FIGS. 1A-1B) to
one or more previously calculated weight values stored in
codeset converter weighting 122 (FIGS. 1A-1B). Accord-
ingly, one or more weight values may have a higher or lower
weight value from the previously stored weight values as a
result of the change to the one or more requests received
from client application 138 (FIG. 1A) over network 136
(FIG. 1A) via request input 202 (FIGS. 2A-2C).

At 408, a ranking is determined for the library of codeset
converter based on the compared weight values. For
example, a codeset converter having the highest weight
value may be, among other things, given the greatest ranking
and may, therefore, be selected to be programmed to the
codeset conversion accelerator. In operation, CCA 110
(FIGS. 2A-2C) may determine Codeset Converter A, for
example, has the greatest weight value and may select
Codeset Converter A for programming to codeset conversion
acceleration appliance 204 (FIGS. 2A-2C).

FIG. 5 is an operational flow chart corresponding to a
weight value calculating process utilized by CCA 110

US 9,438,269 Bl

11

according to an exemplary embodiment. FIG. 5 is described
with the aid of the exemplary embodiments of F1G. 1A, FIG.
1B, and FIGS. 2A-2C.

At 502, data corresponding to language information for
the one or more requests is collected. Non-limiting exem-
plary language information may include, among other
things, information corresponding to a language associated
with a source codeset for conversion, a language associated
with a target codeset for conversion, and a default language
associated with the received requests. In operation, CCA 110
(FIGS. 2A-2C) on server 102 (FIGS. 2A-2C) may receive a
request from client application 138 (FIG. 1A) via request
input 202 (FIGS. 2A-2C) for conversion from, for example,
GB18030 to UTF-8. Thus, CCA 110 may detect, among
other things, a language associated with client application
138, a language for the source codeset (i.e., Chinese for
GB18030), and a language for the target codeset (i.e.,
English for UTF-8). Additionally, CCA 110 may determine
the language information by, among other things, analyzing
metadata from the one or more requests received through
request input 202. Alternatively, CCA 110 may determine
the language information by polling client application 138
directly.

At 504, data corresponding to locale information for the
one or more requests is collected. It may be appreciated that
the process of collecting the locale information data is
substantially similar to the process of collecting language
information data, as discussed above. For example, non-
limiting exemplary locale information data may include,
among other things, information corresponding to language
and culture settings, running codeset converters, and default
languages.

At 506, data corresponding to geolocation information for
the one or more requests is collected. It may be appreciated
that the process of collecting the geolocation information
data is substantially similar to the process of collecting
language information data, as discussed above. For example,
non-limiting exemplary geolocation information data may
include, among other things, information corresponding a
user’s physical location, country data, and province data.

At 508, data corresponding to computing platform infor-
mation for the one or more requests is collected. It may be
appreciated that the process of collecting the computing
platform information data is substantially similar to the
process of collecting language information data, as dis-
cussed above. For example, non-limiting exemplary com-
puting platform information data may include, among other
things, information corresponding to operating system
names, releases, and versions; running and installed codeset
converters; running and installed applications; user profiles
and related information; application profiles; platforms of
connected clients and servers; and major encodings of
inbound and outbound data.

At 510, data corresponding to existing codeset converters
for the one or more requests is collected. It may be appre-
ciated that the process of collecting the existing codeset
converter data information data is substantially similar to the
process of collecting language information data, as dis-
cussed above. For example, non-limiting exemplary existing
codeset converter data may include, among other things,
data corresponding to codeset converter usage associated
with the one or more requests, data corresponding to encod-
ing standards associated with inbound data and outbound
data associated with the one or more requests, data corre-
sponding to the number of function calls for one or more

10

15

20

25

30

35

40

45

50

55

60

65

12

codeset converters, and data corresponding to an amount of
codeset conversion data associated with one or more codeset
converters.

At 512, data corresponding to predefined weight values
for each of the library of codeset converters is collected. One
or more codeset converters from among the library of
codeset converters may be, for example, manually assigned
the highest weight value and may, therefore, be included in
the codeset converter accelerator. Alternatively, the pre-
defined weight values may be determined from previously
calculated weight values. It may be appreciated that the
process of collecting the predefined weight values is sub-
stantially similar to the process of collecting language
information data, as discussed above.

At 514, one or more weight values for each of the library
of codeset converters is calculated based on one or more of
the collected data. As previously discussed, one or more
weight values may be calculated for the codeset converters
stored in the codeset converter library. The weight values
may be, among other things, determined using the changes
to the requests. Additionally, the weight values may be
compared against one or more previously calculated weight
values stored in memory and may, in turn, be stored in
memory. In operation, CCA 110 (FIGS. 2A-2C) on server
102 (FIGS. 2A-2C) may use CCM weight algorithm 126
(FIGS. 1A-1B) to calculate one or more stored weight
values. By way of example and not of limitation, CCM
weight algorithm 126 may be, among other things, of the
form f(cem,)=aX,+bX,+cX;+ . . . +4zX,,. Coeflicients a, b,
¢, etc. may be preconfigured and stored in codeset converter
weighting 122 (FIGS. 1A-1B). Alternatively, coefficients a,
b, ¢, etc. may be reconfigured, such as by client application
138 (FIG. 1A) over network 136 (FIG. 1A). Additionally,
X, X5, X5, etc. may include but are not limited to language
information, locale information, geolocation information, a
number of calls for specific codeset converters, one or more
predefined weight values for the codeset converters, and
information associated with iconv profile information 118
(FIGS. 1A-1B). CCA 110 may optionally store the calcu-
lated codeset conversion weights is codeset converter
weighting 122 for future use.

FIG. 6 is an operational flow chart corresponding to a
reprogramming process utilized by a CCA program accord-
ing to an exemplary embodiment. FIG. 6 is described with
the aid of the exemplary embodiments of FIG. 1A, FIG. 1B,
and FIGS. 2A-2C.

At 602, one or more codeset converters having a higher
rank than one or more existing codeset converters is added
to the codeset converter accelerator. In operation, server 102
(FIG. 2B) may determine that Codeset Converters D and E
(FIG. 2B) from among codeset converter library 120 (FIG.
2B) may have, among other things, a higher ranking than
Codeset Converters B and C (FIG. 2B) from codeset con-
version acceleration appliance 204 (FIG. 2B). Server 102
may accordingly direct selective accelerator reprogramming
daemon 116 (FIGS. 1A-1B) to add Codeset Converters D
and E to codeset conversion acceleration appliance 204.
Additionally, server 102 may further determine that Codeset
Converter A from among codeset converter library 120 is
substantially the same or similar to Codeset Converter A
from codeset conversion acceleration appliance 204. Server
102 may then restrict the addition of a second copy of
Codeset Converter A to codeset conversion acceleration
appliance 204.

At 604, the one or more existing codeset converters
having a lower rank than the one or more added codeset
converters is deleted from the codeset conversion accelera-

US 9,438,269 Bl

13

tor. The codeset conversion accelerator may have limited
space for codeset converters, and it may be, among other
things, impractical to store a library of thousands of codeset
converters on a codeset conversion accelerator. Thus, one or
more existing codeset converters may be deleted from the
codeset converter accelerator to allow space for one or more
newly determined most-used codeset converters. In opera-
tion, CCA 110 (FIGS. 2B-2C) may direct codeset conversion
acceleration appliance 204 (FIGS. 2B-2C) to delete, for
example, Codeset Converters B and C (FIGS. 2B-2C) to
allow space for Codeset Converters D and E (FIGS. 2B-2C)
to be programmed to codeset conversion acceleration appli-
ance 204. It may be appreciated, however, that an existing
codeset converter may not need to be deleted from codeset
conversion acceleration appliance 204 if codeset conversion
acceleration appliance 204 has enough memory to store the
additional codeset converters. For example, Codeset Con-
verters B and C may use single byte-characters as opposed
to, among other things, double-byte characters, thereby
allowing space for Codeset Converters D and E on codeset
conversion acceleration appliance 204.

At 606, the stored weight values associated with the one
or more added codeset converters in the codeset conversion
accelerator are updated. The calculated weight values for the
one or more codeset converters may be stored for future
comparison. In particular, the weight values for the one or
more codeset converters programmed to the codeset con-
verter accelerator may be stored to determine the subset of
codeset converters from among the library of codeset con-
verters to add to the codeset conversion accelerator and the
one or more codeset converters to delete from the codeset
conversion accelerator. In operation, CCA 110 (FIGS.
2A-2C) may save the weight values calculated by CCM
weight algorithm 126 (FIGS. 1A-1B) to codeset converter
weighting 122 (FIGS. 1A-1B). CCM weight algorithm 126
may subsequently use the one or more weight values saved
to codeset converter weighting 122 to, among other things,
calculate one or more new weight values for the codeset
converter library 120 (FIGS. 2A-2C).

FIG. 7 shows a block diagram of the components of a data
processing system 800, 900, that may be incorporated within
server 102 (FIGS. 1A, 1B) in accordance with an illustrative
embodiment of the present invention. It should be appreci-
ated that FIG. 7 provides only an illustration of one imple-
mentation and does not imply any limitations with regard to
the environments in which different embodiments may be
implemented. Many modifications to the depicted environ-
ments may be made based on design and implementation
requirements.

Data processing system 800, 900 is representative of any
electronic device capable of executing machine-readable
program instructions. Data processing system 800, 900 may
be representative of a smart phone, a computer system,
PDA, or other electronic devices. Examples of computing
systems, environments, and/or configurations that may rep-
resented by data processing system 800, 900 include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, network PCs, minicomputer systems, and distributed
cloud computing environments that include any of the above
systems or devices.

The data processing system 800, 900 may include may
include a set of internal components 800 and a set of external
components 900 illustrated in FIG. 6. The set of internal
components 800 includes one or more processors 820, one

10

15

20

25

30

35

40

45

50

55

60

65

14

or more computer-readable RAMs 822 and one or more
computer-readable ROMs 824 on one or more buses 826,
and one or more operating systems 828 and one or more
computer-readable tangible storage devices 830. The one or
more operating systems 828 and programs such as Codeset
Conversion Acceleration (CCA) 110 is stored on one or
more computer-readable tangible storage devices 830 for
execution by one or more processors 820 via one or more
RAMs 822 (which typically include cache memory). In the
embodiment illustrated in FIG. 6, each of the computer-
readable tangible storage devices 830 is a magnetic disk
storage device of an internal hard drive. Alternatively, each
of the computer-readable tangible storage devices 830 is a
semiconductor storage device such as ROM 824, EPROM,
flash memory or any other computer-readable tangible stor-
age device that can store a computer program and digital
information.

The set of internal components 800 also includes a R/'W
drive or interface 832 to read from and write to one or more
portable computer-readable tangible storage devices 936
such as a CD-ROM, DVD, memory stick, magnetic tape,
magnetic disk, optical disk or semiconductor storage device.
CCA 110 can be stored on one or more of the respective
portable computer-readable tangible storage devices 936,
read via the respective R/W drive or interface 832 and
loaded into the respective hard drive 830.

The set of internal components 800 may also include
network adapters (or switch port cards) or interfaces 836
such as a TCP/IP adapter cards, wireless wi-fi interface
cards, or 3G or 4G wireless interface cards or other wired or
wireless communication links. CCA program 110 can be
downloaded from an external computer (e.g., server) via a
network (for example, the Internet, a local area network or
other, wide area network) and respective network adapters
or interfaces 836. From the network adapters (or switch port
adaptors) or interfaces 836, the CCA program 110 is loaded
into the respective hard drive 830. The network may com-
prise copper wires, optical fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge
servers.

The set of external components 900 can include a com-
puter display monitor 920, a keyboard 930, and a computer
mouse 934. External component 900 can also include touch
screens, virtual keyboards, touch pads, pointing devices, and
other human interface devices. The set of internal compo-
nents 800 also includes device drivers 840 to interface to
computer display monitor 920, keyboard 930 and computer
mouse 934. The device drivers 840, R/W drive or interface
832 and network adapter or interface 836 comprise hardware
and software (stored in storage device 830 and/or ROM
824).

T)he descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the one or more
embodiment, the practical application or technical improve-
ment over technologies found in the marketplace, or to
enable others of ordinary skill in the art to understand the
embodiments disclosed herein.

US 9,438,269 Bl

15

What is claimed is:

1. A processor-implemented method for accelerating
codeset conversion, comprising:

receiving, by a processor-implemented codeset conver-

sion acceleration (CCA) component, one or more
requests for codeset conversion;

detecting, by the CCA, a change in the one or more

received requests for codeset conversion;

selecting, by the CCA, a subset of codeset converters

associated with a library of codeset converters for
inclusion in a codeset conversion accelerator in
response to detecting the change;

reprogramming, by a selective accelerator re-program-

ming daemon of the CCA, the codeset conversion
accelerator with the selected subset of codeset convert-
ers; and

routing, by a codeset conversion switch agent of the CCA,

the received requests to the codeset conversion accel-
erator.

2. The method of claim 1, wherein the codeset conversion
accelerator comprises at least one of a graphics processing
unit (GPU) and a field-programmable gate array (FPGA).

3. The method of claim 1, wherein the selecting the subset
of codeset converters comprises:

calculating one or more weight values for the library of

codeset converters;

sorting the library of codeset converters according to the

one or more calculated weight values;
comparing the calculated weight values of the one or
more sorted codeset converters to one or more stored
weight values associated with one or more codeset
converters in the codeset converter accelerator; and

determining a ranking for the library of codeset converters
based on the compared weight values.

4. The method of claim 3, wherein the one or more weight
values are calculated based on collecting data associated
with the selected subset of codeset converters, the collected
data comprising one or more of:

a language associated with the one or more requests;

a locale associated with the one or more requests;

a geolocation associated with the one or more requests;

a computer platform associated with the one or more

requests;

existing codeset converter usage associated with the one

or more requests;

a number of codeset conversion function calls associated

with the one or more requests;

an amount of codeset converter data associated with the

one or more requests; and

predefined weight values associated with the library of

codeset converters.
5. The method of claim 3, wherein the reprogramming
comprises:
adding one or more codeset converters from among the
selected subset of codeset converters to the codeset
conversion accelerator based on the one or more code-
set converters having a higher rank than one or more
existing codeset converters in the codeset conversion
accelerator;
deleting the one or more existing codeset converters
having a lower rank from the codeset conversion accel-
erator for each added codeset converter; and

updating the stored weight values associated with the one
or more added codeset converters in the codeset con-
verter accelerator.

6. The method of claim 3, wherein the one or more weight
values are configurable.

5

10

15

20

25

30

35

40

45

50

55

60

65

16

7. The method of claim 1, wherein the computing envi-
ronment comprises an OpenPower architecture.

8. A computer program product for accelerating codeset
conversion, comprising:

a selective accelerator re-programming daemon (daemon)
embodied on a non-transitory computer-readable
medium, the daemon including program instructions
executed by a processor of a computer, the program
instructions comprising:

program instructions to receive one or more requests for
codeset conversion;

program instructions to detect a change in the one or more
received requests for codeset conversion;

program instructions to select a subset of codeset con-
verters associated with a library of codeset converters
for inclusion in a codeset conversion accelerator in
response to detecting the change;

program instructions to reprogram the codeset conversion
accelerator with the selected subset of codeset convert-
ers; and

program instructions to reroute the received requests to
the codeset conversion accelerator.

9. The computer program product of claim 8, wherein the
codeset conversion accelerator comprises at least one of a
graphics processing unit (GPU) and a field-programmable
gate array (FPGA).

10. The computer program product of claim 8, wherein
the instructions to select the subset of codeset converters
comprises:

instructions to calculate one or more weight values for the
library of codeset converters;

instructions to sort the library of codeset converters
according to the one or more calculated weight values;

instructions to compare the calculated weight values of
the one or more sorted codeset converters to one or
more stored weight values associated with one or more
codeset converters in the codeset converter accelerator;
and

instructions to determine a ranking for the library of
codeset converters based on the compared weight val-
ues.

11. The computer program product of claim 10, wherein
the instructions to calculate the one or more weight values
comprises instructions to collect data corresponding to at
least one of:

a language associated with the one or more requests;

a locale associated with the one or more requests;

a geolocation associated with the one or more requests;

a computer platform associated with the one or more
requests;

existing codeset converter usage associated with the one
or more requests;

a number of codeset conversion function calls associated
with the one or more requests;

an amount of codeset converter data associated with the
one or more requests; and

predefined weight values associated with the library of
codeset converters.

12. The computer program product of claim 10, wherein

the instructions to reprogram comprises:

instructions to add one or more codeset converters from
among the selected subset of codeset converters to the
codeset conversion accelerator based on the one or
more codeset converters having a higher rank than one
or more existing codeset converters in the codeset
conversion accelerator;

US 9,438,269 Bl

17

instructions to delete the one or more existing codeset
converters having a lower rank from the codeset con-
version accelerator for each added codeset converter;
and

instructions to update the stored weight values associated

with the one or more added codeset converters in the
codeset converter accelerator.

13. The computer program product of claim 10, wherein
the one or more weight values are configurable.

14. A computer system for accelerating codeset conver-
sion comprising:

one or more processors of a computer, one or more

non-transitory computer-readable media, and program
instructions stored on at least one of the one or more
non-transitory computer-readable media executed by at
least one of the one or more processors of the computer,
the program instructions comprising:

program instructions to receive one or more requests for

codeset conversion;

program instructions to detect a change in the one or more

received requests for codeset conversion;

program instructions to select a subset of codeset con-

verters associated with a library of codeset converters
for inclusion in a codeset conversion accelerator in
response to detecting the change;

program instructions to reprogram the codeset conversion

accelerator with the selected subset of codeset convert-
ers; and

program instructions to route the received requests to the

codeset conversion accelerator.

15. The computer system of claim 14, wherein the codeset
conversion accelerator comprises at least one of a graphics
processing unit (GPU) and a field-programmable gate array
(FPGA).

16. The computer system of claim 14, wherein the pro-
gram instructions to select the subset of codeset converters
comprise:

program instructions to calculate one or more weight

values for the library of codeset converters;

program instructions to sort the library of codeset con-

verters according to the one or more calculated weight
values;

program instructions to compare the calculated weight

values of the one or more sorted codeset converters to

5

10

15

20

25

30

35

40

18

one or more stored weight values associated with one
or more codeset converters in the codeset converter
accelerator; and

program instructions to determine a ranking for the library

of codeset converters based on the compared weight
values.

17. The computer system of claim 16, wherein the pro-
gram instructions to calculate the one or more weight values
calculate based on collecting data associated with the
selected subset of codeset converters, the collected data
comprising one or more of:

a language associated with the one or more requests;

a locale associated with the one or more requests;

a geolocation associated with the one or more requests;

a computer platform associated with the one or more

requests;

existing codeset converter usage associated with the one

or more requests;

a number of codeset conversion function calls associated

with the one or more requests;

an amount of codeset converter data associated with the

one or more requests; and

predefined weight values associated with the library of

codeset converters.

18. The computer system of claim 16, wherein the pro-
gram instructions to reprogram comprise:

program instructions to add one or more codeset convert-

ers from among the selected subset of codeset convert-
ers to the codeset conversion accelerator based on the
one or more codeset converters having a higher rank
than one or more existing codeset converters in the
codeset conversion accelerator;

program instructions to delete the one or more existing

codeset converters having a lower rank from the code-
set conversion accelerator for each added codeset con-
verter; and

program instructions to update the stored weight values

associated with the one or more added codeset con-
verters in the codeset converter accelerator.

19. The computer system of claim 16, wherein the one or
more weight values are configurable.

20. The computer system of claim 14, wherein the com-
puting environment comprises an OpenPower architecture.

#* #* #* #* #*

